Spatial-Adaptive Siamese Residual Network for Multi-/Hyperspectral Classification

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperspectral Image Classification Based on Nonlinear Spectral-Spatial Network

Recently, for the task of hyperspectral images classification, deep learning-based methods have revealed promising performance. However, the complex network structure and time-consuming training process have restricted their applications. In this letter, we construct a much simpler network, nonlinear spectral-spatial network (NSSNet), for hyperspectral images classification. NSSNet is developed...

متن کامل

Spectral-Spatial Response for Hyperspectral Image Classification

This paper presents a hierarchical deep framework called Spectral-Spatial Response (SSR) to jointly learn spectral and spatial features of Hyperspectral Images (HSIs) by iteratively abstracting neighboring regions. SSR forms a deep architecture and is able to learn discriminative spectral-spatial features of the input HSI at different scales. It includes several existing spectral-spatial-based ...

متن کامل

Adaptive Classification of Hyperspectral Image

An important problem in pattern recognition is the effect of limited training samples on classification performance. When the ratio of the number of training samples to the dimensionality is small, parameter estimates become highly variable, causing the deterioration of classification performance. This problem has become more prevalent in remote sensing with the emergence of a new generation of...

متن کامل

Similarity Mapping with Enhanced Siamese Network for Multi-Object Tracking

Multi-object tracking has recently become an important area of computer vision, especially for Advanced Driver Assistance Systems (ADAS). Despite growing attention, achieving high performance tracking is still challenging, with state-of-theart systems resulting in high complexity with a large number of hyper parameters. In this paper, we focus on reducing overall system complexity and the numbe...

متن کامل

Fusion ARTMAP: An Adaptive Fuzzy Network for Multi-Channel Classification

Fusion ARTMAP is a selforganizing neural network architecture for multiMchannel, or InultiMscnsor, data fusion. Fusion ARTMAP generalizes the fuzzy ARTMAP architecture in order to adaptively classify multi-channel data. The network has a sy1nmetric organization such that each channel can be dynamically configured to serve as either a data input or a teaching input to the system. An ART module f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2020

ISSN: 2072-4292

DOI: 10.3390/rs12101640